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/ Abstract

%

. A new finite element method is proposed for the numerical

solution of a class of initial-boundary value problems for
first order hyperbolic systems in one space dimension. An
application of our pro;:edure to a system modeling gas flow
in a pipe/\is discussed. Asymptotic error estimates are derived
in the @ norm in space.
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1. Introduction.

We propose and analyze a new finite element method for
the numerical solution of a class of initial~boundary value
problems for first order hyperbolic systems in one space dimen-

sion. Our method is based on a procedure.given by Platzman ([9].

A generalization of our procedure for problems in two space
dimensions will be treated in a later paper [8].

We consider problems in one space dimension of the form

u +(a12(x.t)v)x

N fl(x.t.u.V).

(x,t) e [0,1]x[0,T],

(1.1) vt+a21(x,t,u,v)ux + azz(x,t,u,v)vx

fz(x,t,u,v), (x,t) ¢ {0,1]x[0,T],

u(x,0) uo(x), v(x,0) vo(x). x € [o0,1),

v(0,£) = g,(t), v(l,t) = g;(t), te [0,T.

We assume that (u(x,t),v(x,t)) is a smooth solution of (1l.1l).
Let 4 be a compact neighborhood in [0,1]1x{0,T]x RxIR of the

set

{(x,t, u(x,t), vix,t)) I (x,t) € [oll]xlolT]} ’
and assume that there exists a positive constant, a, such that

(102) alz(x't) Z a' QZI(X,t,Sl,Sz) Z a 14
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for all (x,t,s;,s,) € A . We assume also that aij(x.t,sl,sz)
and fi(x,t.sl,sz) are Lipschitz continuous functions of their
arguments for (x,t,s;,s,) € a.

Initial-boundary value problems of the form (1.l1l) occur,
for example, by scaling the space variable, x, of the following
first-order system modeling the transient behavior of isothermal

gas flowing in a pipe:

Dt + Gx =0, (x,t) e [0,L]x[0,T],
2 2 =2 -1
G, + (6" = Gp )px + 2Gp Gx
(1.3) = -£|G|Go" Y,  (x,t) € [0,L1x[0,T],

p(x,0) = po(x)r G(x,0) = Go(x)p x € (o,L],
G(0,8) = g (t), G(L,t) = g,(t), te [0,T],

where o is mass density, G is momentum density (averaged
through the pipe cross - section), o = o(p) is the isothermal
speed of sound, L is pipe length, and f = £(|G|) > 0 is a
friction factor. We assume that the friction factor is described
by the Moody diagram (see [12, p. 288-289]). In this case there
exist positive constants G, and £, such that £(|G]) = f0|G|-1

for |G| <. G, . There also exists a positive constant f,

such that

lim £(|G]) = £

|G|+ 1

The boundary conditions above correspond to supplying the mass

rate of flow at x = 0,L. Conditions on the data and the friction
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factor guaranteeing the existence of global smooth solutions
to (1.3) have been given by the author in [7].
We now describe the finite element spaces used for our

procedure for (l1.l). Set I = [0,1] and for E CI define
P (E) = {2: I + R zIE is a polynomial of degree < k} .

For the partition 6§ = {0 = Xp < X < eee< Xy = 1} we define

Ii = [xi-l'xi]' hi = xi"xi-l' and h = max hi . Set

(1.4) M (x,6) = (z € <l ze P(I), i=1,2,...,N} .

We shall often write ‘7 for ‘an(r,c). We also set

%‘m = %mk(r,a) = {g—}z'{ | z € mk(r,G)} .

We shall assume that the families of spaces fﬂk(r,s) con-
sidered in this paper are based on meshes § that are guasi-
uniform, i.e., there exists C1 > 0 independent of h such

that
. i
(1.5) min + > C; .
If f,g € Lz(I), denote

1
{f,g) = IO fg dx .

We propose the following method to approximate (l.l):

P —————
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Find U: [0,T] » 7, V: [0,T] + %m such that (sup-

pressing explicit dependence on x,t)

KU ix)=<Kay, Vix, 7 + a),(L,t)g; (£)X(1)

(1l.6a)
- a;,(0,8)g,(t)x(0) =LE (U XD, x € M,
<Vt + 2y, (UVIU, + a,, (UVIV,, XD
+ B[V(l,t) - gl(t)l X (1)
(1.6b) + 8V (0,t) - go(t)l x (0)

4d
= <f2(U,V)IX> ’ X € ’d;?”,

U(0) ® u V(0) = v

o' 0 °
The terms multiplied by the constant g in (l1.6b) repre-

sent penalty terms to impose the boundary conditions. Let
(x,t)e[0,1])x[0,T]

We show that the scheme (1.6) is convergent if g > y/2. If
a,, = 0, it follows that the scheme (l1.6) is convergent for
8 = 0. We must also require that 7 C Cl(I), i.e., k>1,

if a,, # 0. Otherwise the term

<322(U0v)vxt X)r X € ad’?m ’

will not be defined.
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We denote by BJ, for 3 a positive integer, the Sobolev

]
{ : space of functions on I with j derivatives in LZ(I) and
:

norm
S B S
2 dz 47z 2 2
HHEE J =% —x 4 izlI® = izl -
] 0 ax* ax 0

k=0

We shall prove the following theorem in Section 5:

Theorem 1. Let (u,v) be the solution to (l.1) and assume

that there exists c2 < o such that

sup ([ju]|  +|[v]|.) < C
i lhall, +1ivil, 2

T

[ [hsen? +twen]ee <, .
0

Assume that U(0) em, v(0) € %MSatisfy, for some C, <= ,

< C hr .

(1.8) [|lu(o) - u oll £ C4

ol + N1V = v

Suppose that 8 > y/2, that k > 1 if as, £ 0, and that r > 2

if the system (l1.1) is nonlinear. Then there exists h0 > 0 and

C such that the solution (U,V) of (1.6) exists on (0,T] for

T

h < ho and such that

" o W A RS R TN S A e

Fet AL

(1.9)  JJu(t)=u(t)]] + ||v(t)-v(t)|] < ch® for t e [0,T], h<h

0 .
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We note that the estimate (1.9) is of optimal order for
v. It has not yet been determined whether the order of this
estimate for the approximation of u can be improved in
general. The optimality of the result (1.9) is discussed in
more detail in Section 5.

Our procedure should be compared to the standard finite
element procedure [2], to be discussed in Section 2, for approxi-
mating the solution of first-order hyperbolic systems. Although
high convergence rates can be proven for both the standard finite
element procedure and our alternative procedure, there are
important qualitative differences in the solutions they produce.
It is shown in Section 2, that the numerical solution produced
by the standard finite element procedure has dispersion proper-
ties unlike those of the exact solution of the differential
equations. This behavior has been noted by, among others,
Hedstrom [5] and Platzman [9]. We show in Section 2 that
for a model problem which is a linearization of (1.3) our
proposed procedure yields a solution with dispersion properties
similar to those of the solution of the differential equations.

In Section 3 we discuss the qualitative nature of the
solution of (1.3). We show that for short pipes (L small) or
rough disturbances the dissipative term -f.lGle-l ig rela-
tively unimportant and the solution to (1.3) is approximated by
the solution to a wave equation. However, for long pipes and
mild disturbances the dissipative term -flGIGp-l is shown to

be very important and the solution to (1.3) is approximated by




the solution to a diffusion equation. Our numerical solution
is shown to be close to that of the solution of the standard
finite element method for the wave equation or the diffusion
equation under the appropriate conditions.

Section 4 gives a result which indicates that accurate long-
time integration of systems such as (l1.3) is possible with our
procedure. We note that accurate long-time integration of (1l.3)
is not possible with the standard finite element method due to

the accumulation of round-off and truncation error.




2. Disgersion analysis of an example.

Consider the hyperbolic system

ut + Vx =0, (x,t) e [0,1]x[0,'1'],

Vt + \lx = (, (x,t) € [0,11x[0,T],
(2.1)

v(0,t) = v(1,t) = 0, t e (o,T),

u(x,0) = uo(x). v(x,0) = vo(x). x e [0,1].

The solution to (2.1) is easily constructed through Fourier

analysis. If

ug(x) = % a  cos nmx, vo(x) = ; b sin amx, 3

then

(- -]
ul(x,t) = % An cos(nwt-+9n)cos nTx ,

x
vix,t) = ; A sin(nwt-+en)sin nrx ,

where Ao = ao, 90 = 0, An cos en = an, An sin en =Db .

n

Now consider two approximation procedures for (2.1). Let

Hé = {z € . [2(0) = z(1) = 0} ,
m’ = M8 nad,

and define the standard finite element approximation (2] to be

the functions U : [0,T] +7M, V : (0,T] » y%° such that

Py Y L >
IR S PN VTN 57 AP RSP [P SGUE PP U, P,



-9=
<uv > + <V ,0> = 0, we M,

0
(2.2) <V >+ <uW> = 0, we 7 .,

u(o) ® u V() = v, .

o’ 0

It is instructive to study an explicit solution of (2.2) ;

in the case k=0, r =1, and § is a uniform partition.

For N a positive integer, set h = % and x; = ih,

i=290,...,No Define the interpolation operator 6) : C(I) - =
7]y(1.,6) by the relations

. @z(xi) = z(x;) for i =0,...,N.

If

i N

R u(o) =} a, ®P(cos nmx) ,

Z 0

N

8 v(0) = J b_ @ (sin nmx) ,

10

&1 then

¢

w2, N

i =

3 u(t) % Al COS(Fnt-Fen)GD(cos nrx) ,
1 (2.3)
L ; ; v -3 A sin(r t+0 )P (si )

f- (¢) = % o Sin(Ty 0, sin nmx) ,

¢ where Ao = ao, An cos en =a., An sin en = bn' for

-

n=1,...,N, and

DI STR - b P & SN

N
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= 3 sin nhnr
(2.4) 1-'n h(2 + cos nh7)

Note that PN = 0. Thus, we see that
U(t) = P(cos Nrx), V(t) = @P(sin Nrx) = 0

is a non-constant steady state solution to (2.2). Furthermore,
we see from Graph # 1 that the most spatially oscillatory com-
ponents of the solution of (2.2) have a low frequency ir. time

even though the spatially oscillatory components of the solution

of (2.1) have high frequency in time.

We can also see this phenomena for (2.2) and general spaces

m = 7zk(r:6) as follows. Since

dim él zno + 1 < dim Zﬂ ’
X
there exists a non-constant 2 € 77} such that

(2.5) D> = - > =0, xe 0 .

Hence

(2.6) u(t) = 2, vit) =0

is a non-constant steady state solution of (2.2). We note by
(2.5) that Z must be a highly spatially oscillatory function.

A Our new procedure to solve (2.1) is the following. Find

o s e A IO D g i Lk B
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u: [0,T] - = Wzk(r,G), v :[(0,T] » -(% 777 such that

<v > - <vw>= 0, We 77,
d
(2.7) <G > + <y > = 0, ¥WeSm,

u(o) = Uy V(o) = v

We note that by elimination of V in (2.7) we see that U

satisfies

<o ow> + U W D>= 0, wWeT.

Hence, our procedure reduces in this special case to the standard
method for the wave equation.

An explicit solution to (2.7) can be constructed as follows.
Let Ak be the kth positive Rayleigh-Ritz approximate eigen-

value with eigenfunction U, € 77 for the problem

k

-u" = )\u, x € [0,1],
(2.8)

u' (0) = u'(l) = 0.

Thus, 0 < Al < Az < seoe <AM and

A <Up > = <ka,wx>, wem,

where M = dim 2] - 1. Let we = VX - Also, set wy =0
and U0 =1, If

f e e T s—




Ak cos(mkt-+ek)Uk,
. -1
Ak sxn(wkt-kek)(-wk Uk)x ’

where Ay = a,, 60 = 0, Ak cos ek =a, . Ay sin 8 = bk .
It is well known [l11, p.223] that W >k for k=1,...,M.
Hence, we do not obtain non-constant steady states for (2.7),
and states which are spatially oscillatory have high frequency
in time. )

H In the case 77 = 7%0(1,5) where § is a uniform mesh

of size % + N a positive integer, we can take

Uk = 6D(cos knx)

and
- ._,krth -2 oin2 krh,~-1/2 -1
(2.9) Wy 2 szn(—i—)(l 3 sin -5—) h .

A comparison of the graph of Wy and Fk with the graph of

Vi = km (see Graph #1) shows the superior dispersion relation
given by scheme (2.7). Intuitively, the graph shows that only
about one-half of the degrees of freedom in the standard method

are useful in approximating the solution , whereas for the pro-

posed method all of the degrees of freedom are useful,

C e R p—————
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Graph % 1
(from Platzman, ([9])
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3. Aapplication to the modeling of gas flow in a pipe.

For high frequency disturbances solutions of equation
(1.3) behave very much like solutions of the usual second-
order wave equation and for low fregquency disturbances they
behave very much like solutions of a heat equation. In this
section we indicate the sense in which this is true for a
linearized version of (1.3) and examine the behavior of our
numerical method in these two limiting situations.

If we linearize (1.3) about constant mass density o > 0
and momentum density G = 0, we obtain the system (after scaling

the length)

(3.1) 0, + L‘lcx =0, (x,t) € [0,1)x[0,T] .
-1~2 s

(3.2) Gt + L "o px = -£G,

(3.3) p(x,0) = po(x), G(x,0) = Go(x), x € [0,1],

for positive constants L, g , and f where L 1is pipe length,
G = 0(8) is the isothermal speed of sound, and £ is a constant
friction factor. We consider for simplicity the case of homo-

geneous boundary conditions

(3.4) G(0,t) = G(1,t) = 0, t e [0,T].

We obtain by eliminating the variable G from (3.1)-(3.2)

the damped wave egquation

p—
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N,

EAE T KN

e 1, Lt

ptt - L-zaszx = -%pt ’ (x,t) e [0,1]x(0,T],
(3.5)  p(x,0)0 = pg(x), p.(x,00 = -L7l6) (x), x e [0,1],
X
px(O,t) = px(l,t) = 0, t e [(0,T].

Now suppose that the initial data is such that for m a

positive integer
(3.5a) o(x,0) = G cos (mrx), pt(x,O) = Bm cos(mnx) .
"Then it is easily checked that the solution to (3.5) is given by

+ -
+ Ynt - Ymt
(3.6) p({x,t) = [ém e + c, e cos (m1Tx)

where

vi= - %[1 1~/1 - am%s? 172 32 %‘2] ,

+ By — Yu’m
cm— i : .
Ym T Ym
If y; = y; for some m, then small modifications of the
following arguments are necessary. Let
+
+ Tmt
pl(x,t) =c, e cog(mwx) ,
Y-t

- Tm
pz(x,t) =c e cos (mrx) .

Note that p = 1y + Py .*
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We first consider the case when

(3.7) nénl ”H2 72, .

A simple calculation shows that under the condition (3.7)

we have that

~ -22
(3.8) [£o; | << |L "8%; |v |0y | «
e | 1xxI et

for (x,t) e [0,1]x[0,T)], i =1,2. (For functions

¢,y € C([0,11x[0,T]) we say |¢| << |y| for (x,t) € [0,1]x[0,T]
if and only if |¢|/|y| << 1 for (x,t) € [0,1]1x(0,T}). Hence,
it follows that the solution to (3.5) is approximated by the

solution to the wave equation

= oc (xnt) e [O,I]X[01Tl'

rl (3.9) 0, (0.t) = p (1,£) = 0, te [0,T],

p(x,0) = L cos (mnx) , pt(x.O) = Bn cos{mrx) , x € {0,1]. }

Next, we consider the case when

\ (3.10) m?n? 17202 F2 << 1, [ [<< [a B

Then it is easily verified that

(3.11) |o | << |L-232p
2¢et

. |%pz| , for (x,t) € [0,1]1x[0,T).
t

!
2xx

AL

. -

v o0& 8 ..ao-onﬂtnoq, ...-_

X . ix' etk hca B ) L NN 77
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It also follows from (3.10) that

+ -
Ihi << |
so that
2 -2a2 =242 ~
ey 1o Ifop |+ [L 6%, | << |L 8%, |, |fp, |
lee le 1xx 2 xx 2y
(3.12)
for (x,t) € [0,1])x[0,T].
Hence, we see from (3.11l) and (3.12) that under the conditions
(3.10) we have that the solution of (3.5) is approximated by

the solution of the diffusion equation

L7282 = ~fo, . (x,£) € [0,1]x(0,T],
(3.13) Qx(opt) = Qx(llt) = Q, t e [0,T) ’
p(x,0) = G cos (mnx) , x € [0,1]. %

We shall now show that under the conditions (3.7) our
numerical solution to (3.1)~(3.3) is close to the standard
finite element method for the wave equation (3.9) and that under
the conditions (3.10) our numerical solution to (3.1)-(3.3) is close to
the standard finite element method for the diffusion eguation
(3.13).
Our finite element solution to (3.1)-(3.3) is p: [0,T] ~ 777,
G: [0,T] » d—i‘-m such that

(3.14a) P> <:L-1G. xx:> =0, x €7,

‘e 8t e @8 & & oo s s® 0
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(3.14Db) <Gt'x> + <L-162pxrx> = '<%G,)>: x € ad;c'm ’

(3.14c) p(0) = p4s G(0) = Go .

We can eliminate G from (3.14) to obtain the following

finite element equation for p: [0,T] + 7

(3.15)  GppprxD> + <%0, x> = ~<Eppr > x €M
where (0) 1is as in (3.14c) and p (0) € 7N satisfies by (3.1l4a)

(3.16) <o (0, x> = <t7le@, x>, xewm .

As in our discussion of the differential problem, we assume that

p(0) = amUm' pt(O) = Bmum

(we use here the notation for the eigenproblem (2.8) introduced

in Chapter 2). The solution to (3.15) is then given by

+
T t _ It
(3.17) p(t) = [cre™ + coe™]

m U

m

where

s _ _ £ J_ -22~-2]
Tm 3 [} *AJL -4 L 73" £ '

3 +113 +1

-

sttt g . -+

“* o 3

. 8 8se a2 e dert oo WB @ sl T U T. 00
e 2 . - . ‘
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An analysis similar to that given for the differential

problem then establishes that if
(3.18) A, 17272 55,

we have that the solution to (3.15) is approximated by the
solution p: [0,T] - 77 to be standard finite element approxi-

mation for the wave equation

(3.19) CPppr XD + <L'2329x,xx) =0, xe”n.

Similarly, if

(3.20) A L2352 g2

o << 1, |8m| << Iam%l

it can be verified that the solution to (3.15) is approximated

by the solution p: [0,T]) + 77 of the standard finite element

approximation for the diffusion equation

<L-2329xr Xx> = -f <ptl X> r X e»l '

pretgst TR

(3.21)

e 2

5y p(0) a U .

v




4. long-time integration.
We shall prove the following result:
Lemma 1. Let (p,G)

be the solution to the continuous problem
(3.1)=(3.4). There exists positive constants C and D

(depending on 3, L, and f. but independent of T, Po? Go)

such that .

1
loter = [ ng axll + ([ae]
(4.1)

P

1
-Dt
< 8T eg - [ 0g axll + UGl

Also, if p: [0,7] = 7R, G: [0,T] + 3= 77 is the numerical
approximation of (3.1)=(3.4) defined by (3.14), then

1l
lo(t) - fo p(0)ax|| + |la(t) ]l
(402)

<

A =Dt 1
Ce "~ (|lp(0) - f p(yax|l + llei]).
0

Te . - -

* 6 ¢ @ @ & ¢ ¢ 8

‘e 9 LI
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Remark.

This result implies that the dependence of the solution p, G

of (3.1)=-(3.4) at t, > ¢t on o, GO’ and the boundary

1 0
conditions for ¢t € [o,tol decays exponentially (except for

1 .
the dependence on I p(x.to)dx, of course). It is essential
0
that a numerical procedure for (3.1)-(3.4) have the property
(4.2) if the accumulation of round-off error and truncation

error is to be prevented from destroying the accuracy of the

numerical solution after a finite interval of time.

Proof of Lemma 1.

We shall prove the estimate (4.2) for the numerical solution
given by (3.14). The proof that (4.1) holds for the differential

problem is analogous. Suppose that the solution p(t) =
M
g e (t)U € 77 to (3.14) has initial conditions

M M
p(0) = g anUpy pt(O) = g BmYn

We assume in this section that the eigenfunctions {Um} have been

Bt < AR TS Sl

normalized. Again, if Y; = Y; for some m, then small modifications

of the following arguments are necessary.

It.fo;laws from (3.17) that

e

* ’ .. . « o @ ¢ 'l ® Q-0 . C ] et + @ - .
DO ] . ¢ . . . 3
e oedlp e @ ¢ W @ @ ¢ ot oy LN 4 } . -~ . - -
; i - o X Z 5 o, L. . . J
i B e i o et < .
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By the orthonormality of the set {U_} we have that

8

(4.3)

1 2
lott) = f p(0)ax|| .
0

M

T e (t)?
1

It £follows from (3.l1l4a) that

M

m

-1
(4.4) G(t) = ) c!(t) LA _ ~ U,
E m m mx
SO
2 M 2 2-1
(4.5) je(e)||® = { cp ()5 LA

It is easily checked that there exists a positive constant

C which is independent of m and § such that
+,2 -2 2 2 .2 . -1
(4.6) lcm] + |cm| < C[am + 8 L™ A l.

A 2

We also note that since A > 1 2"

m-p
it follows that

A ~
< g[l-x/l-hfo L-zfz] D

for m=1,...,M.

for all partitions § and

for m=1,...,M

(4.7) Re T

g

Hence, we have that

-2Dt

2(t) < 2e [|e 2

,,1 + leg 1€l
(4.8)

ce~2Dt | a; N B; 12,71,

m

A

e © % Mo et ® o8 & 0-0~"'!"""'

S e
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Since cm(O) = ap and cé(o) = sm , it follows from (4.3) and

(4.5) that

1

M 1 M
2 -
(4.9) § ar = |lo (0 -jo poyax|| 2, } s; 12 Apg = s -

Thus, if we sum (4.8) for m=1,...,M we obtain

1

1l
(4.10)  |[p(t) - fop(mdxnz < ce 2Dt ||p<0)-[ o(0dx|| 2 + (|G (o) P

0

Next, it is easy to show that there exists a positive con-

stant C which is independent of m and § such that

(4.11) 1527t < e
Hence, we have that
M
2 2 .2 .-1
IG(t)]|© = i cé(t) L A
+ -
M Tt r_t
_ + _+ m -_- m-,2_2. -1
= i (cm Tp © +c fm© )L Am

(4.12)
M
-2Dt +,2 -2
Ce § leg® + legl™l
-2Dt 1
< Ce (“p(o)‘fop(O)dx||2+||G(0)||2).

We note that the estimate (4.2) is not valid for the
standard finite element solution to (3.1l)-(3.4). The standard fi-
nite element solution to(3.1)-(3.4) is obtained from (2.2) by
replacing U with p and V with G and by adding -%<<G,w>

to the right side of the second equation. Since (see (2.5))

e g ——— - M———r Ao a4 e

“\
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p(t) = 2z, G(t) = 0

is a non-constant steady state solution it is clear that (4.2)

cannot be verified for the standard finite element method.

C e ar——

1
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5. Proof of Theorem 1.

We shall fix r > k > 1 and derive optimal order error

estimates for the scheme (1.6) for the family of spaces

satisfying the quasi-uniformity assumption (1.5). We note in

the statement of Theorem 1 that we may allow k =0 if a =0

22
and r =1 if (1.1) is linear. These special cases can be proven
by a variant of the following argument.

In what folllows we denote by WJ'® the Sobolev space of

functions with 3j weak derivatives in L”(I) and norm

lz| = lzlg -

e
2|. =
| IJ kzo “;E L2 (1)

It is well-known that there exists C4 < » , depending only
on Cl of (1.5) and r, such that the following inverse hypo-
thesis holds for x € 77 ,

1/2
™% x| + hf[xll <€, x|l »
(5.1)
1/2
W07 x|+ Bllxgeell £ Cg llxgll -
It is also well-known that the spaceszz, satisfy the

following approximation property:

There exists (g < = such that for 2 < s <r+1 and

z € H®,
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. 2
inf (|lz=x ||+ h|lz =x]l; + 1" ||z-x]]
xem
(5.2)
3/2 s
+h™ 7z =x|)) < Csh™ |2]lg

and for 1 < s<r and z € BY ,

(5.3) inf (| -x|l + hik -x]l +h1/2|z-x|0) < cgh? |zl
X e S 1
ax

We also use the fact that there exists C6 < » SO that if z ¢ H2

and zx(O) - zx(l) = 0, then we can choose X € 70 such

that y (0) = x, (1) = 0 and

(5.4) Iz =x|lp +blixll; € Cghilz]l ;-

In what follows, C will denote a constant which depends

through

on the Lipschitz constants for aij and fif a , and Cl

Ce, but which is independent of § . It will be allowed to vary 3

from estimate to estimate. When the arguments for aij' £

are omitted we assume that the functions are evaluated at

i H

(x,t,u(x,t), vix,t)).

We wish to define the weighted L2 projection of v,

R = R(v) € é%ﬁﬂl, by relations

(5.5) {aj,(v - ROVD,HY =0, We & 7 .

It follows by the approximation property (5.3) and (1l.2) that

ng = v = R(v) satisfies

et g uvd ST
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r
(5.6) )l < cliviln® .

It then follows by the approximation property (5.3) and the

inverse hypothesis (5.1) that

1

/2 r
(5.7) hiiny|l; +h Ingl < Ch” |jvil,. -

We obtain an estimate for uP by differentiating (5.5). We

t
then obtain

d d
(5.8) <a12n2t. WYy + {(fpadny,y =0, Weg
it follows that

llnztll < Clngll + c infd fve = xll
(5.9) X€ 3ax
r
< Ch™ ( ”v”r + Ilvt”r)'
As before, by (5.3) and (5.1) we can then obtain
1/2 r

(5.10) h Ilnztlll + h lnztl < ChrC vl *+lvellg)-

We also wish to define the following approximation of u,

Q = Q(u,v) € 72, by the relations
Cagplu - Quu,vl , x> + <322”2x' Xy >

(5.11) + B, (1,£)x, (1) + Bny(0,t)x, (0) =0, x €7,

jl (u -~ Q(u,v))dx = 0 .
0
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Set ny = u=Q(uv). It follows from (5.1) and (5.7) that

r-1
Ing (Lot)x, ()| < Ch™ ~{Ix Il livil , » X €7,

Iny (0,€)x, (0) ]

(2

r~-1l
Ch™ = [lxgll IVl o » x € 77L.

Hence, it follows that

A

r-1 .
linylly Clinglly + €h™ " jivjl, +¢C 127”
(5.13) X

chr-l

A

CHvlle + dlullp)-

We can derive an L2 estimate for ny by a variant of a

1
frequently used duality argument. Let f € LZ(I). [ f dx = 0,

0
and determine ¢ by

"(3-21¢x)x = £, xe€ [0,1],
¢x(0) = ¢x(1) =0,

1l
[ ¢dx = 0.
0

Note that

1 x
¢x(x) = - ;;I ‘L f(s)ds.

Then it follows that

lfoll, < £l -

Also, for x € 7), such that x (0) = x (1) =0, by (5.11)
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<nyr £ = L ny,m (00, Y = <a21"1," x>

= <‘21”1x' (=) 2+ <a22”2x' (6=x) >

*Ngr (B804 ) -
Now if we choose y to approximate ¢ as in (5.4) so that

e =xll; < Chlle |5 »

it follows that

(5.15) [nyeE)] < Clhfinglly + hllnglly + IIngil NN -

Hence, since

we can conclude that

r
(5.16) inpll < ™ Cfla]l, +1Iv[I 1 -

We can derive an estimate for ny by differentiating (5.11)
t

with respect to t to obtain as in the estimate for llnl”l’

r-1
(5.17) Ilnltlll < Ch” TC[ufl + fluglly + VI, + HVvellg?-

A duality argument similar to the previous such argument establishes

that

O T X SN
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(5.18) unltu < cn® [fufl, *lvlly +ludl o vl -

Set §, = U-Q(u,v), §, = V-R(v). Then from (1.1), (l.6a)

and (5.5) we see that

<51t' x? = <2280 xx 2

(5.19)
-<n1t, x>+ L& U,V - £ (W, P, x €.

It also follows from (1.1), (1.6b), and (5.11) that

£, + a, (u,v)g, + a,,(u,v) 'y D
<2t 21 1, 22 E2 " X

+ 8E,(L.t) x(1) + 8g,(0,8) X(0)

| (5.20) =<ng o x? + Klayyaw) - a (0, VU, X7
+ <[322 (u,v) = azz(UrV) ]Vxl X >

d
+ LUV - £ (v, x>, x € 7 -

We prove the theorem by a variant of an argument used

in [2,6,10,13] by showing that there exists a positive constant

C, such that for any t ¢ [O,T] , 1f

R

et D MRSk L ha e M W edcem s semanti



E

. .\,,.n
b s gy S e b A R

L e

(5.21) (U,vV) exists on [0,t]

such that

{(x,s, U(x,8), V(x,8)) l (x,s) € [0,1] % (0,t]} E “v

and

I(u-U)x(s)I+|(v—V)x(s)l_<,l for 0 <8 <t,
then
(5.22) ftw=mill + lltv-nis|l = c,ht, 0 <5 <t

Let B be a compact neighborhood of
{(x,s, u(x,8), v(x,s)) | (x,s) € [0,1] x [0,T]}

such that (# & interior of A .

It follows from the "inverse" hypothesis (5.1) that (5.22)

implies the existence of a positive constant C

so that
1
=37
j{tu = U)(8)] + |(v=V)(s)] <Ch™ ", 0 ¢s¢t.

Hence, there exists a positive constant hl such that if

h € (0, by ], then (5.22) guarantees that

{(x,8, U(x,8), V(x,8)) ' (x,8) € [O,l]x[o't]} s £ .




-30a-

Similarly, it follows from the "inverse" hypothesis (5.1)

that (5.22) implies the existence of a positive constant C

such that
3
2
[(u=U) (8)]| + |[(v=-V)_(s)|] < ¢h y 0<s <t.
g Hence, since r > 2 there exists a positive constant h2 such

that if h e (0, h2], then (5.22) guarantees that

| (u - U)x(s)l + | (v - V)x(s)l < % for 0 <s < t.

Now U(x,t), V(x,t), I(u-U)x(t)|, and |(v-V)x(t)|

are continuous functions of t. Also, by the assumption (1l.8)

on the choice of U(x,0), V(x,3) and the above discussion
it follows that for h < min(hl,hz) we have (assuming without

loss of generality that C, 2 C3)

{(x,0, U(x,0), V(x,0))| xe I} < B,

[N ] o

lw - (0] + |(v-WV_(0)] <

Suppose we have proven that (5.21) implies (5.22). We can

thus conclude from the existence theory for ordinary differ-
ential equations that if h_ghosmin( hy, hz) » then (U,V)

exists on [0,T],

{(x,s, U(x,8), V(x,8)] (x,s) € [0,1] x [0,TI} & & ,

)

[(w =) (s)| + [(v -V (8)] <

o 0 <

<T,




ltw=-0(ll + lltv=-nill < cp’, 0

ia
"
IA
9

So, we assume that (5.21) is valid. We

shall proceed to prove the estimate (5.22). Since
{(x,s, U(x,8), V(x,8)) |(x,s) € [0,11 x[0,t] € A

we can assume (1.2) and the Lipschitz bounds on the coefficients
where needed. We also note that it follows from (5.21) and

Sobolev's ineguality that

IUx(s)I + |vx(s)l < lux(s)l + va(S)I + 1

(5.23) < cilfuall, + livis)ll;} + 1 2 cCy+1

for 0 < s < t.

o o
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We set ag, e MM  to be the L2 profection of

onto M, i.e.,
a
(3-24) <Eﬂ"51'b =<TG; D xem-

We use the following variant of a lemma of Dupont and Wahlbin

a
{4) to estimate the error ag, - ;2—1- gy -
12

Lemma 2. There is a constant C such that if b is acontinuously
differentiable function on (0,11, ¢ € 7], and y is the Lz

projection of by onto 77 , then

(s = w) Il = Cib.l Hefl-

Proof of Lemma. For x € 7Pp , we have by (5.1)
fBe = W Al < [[Be = X2 )l + |l {x = vl
-1
(5.25) < fHtbe = x) |l + S 7 |ix = v
< lie =l + et bs = xIl +[Ibs =yl )-

el
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It follows directly from [4] that

iPe =wll < ch [by| [lefl .

The argument in [4] also shows that one can construct x € Zvr_l(r,c)

such that

Ibe = xIl + h [l (b = x)yil < Chlb | [jo]} -

The result follows by substituting the above two estimates in

(5.25). Q.E.D.

We apply the lemma to obtain

a a
——— 21 21
(5.26) | (agy)y = (EI; El)xll <C I(;I;)x‘ g Il -

We note that from (l1.2) it follows that there exists a constant

C > 1 such that

a
-1 21
Hlgyll< 132 gyl < cligyll-

We now take y = agl € 77 as our test function in (5.19).

We obtain since ¢, € 77 that
t
a5 > 2o
g1 » A& =81, E1/ -
< 1, 1 < lt a;, °1

Also,




e T

-33~
221 1 4,2
<Elt: a—'lz' El> = 3 FE<$ 81 El>

1 a 221
- §<:51: (EE 3;;) E;>

and by (5.26)

a
21
agp8yr T@ED,D= <Lay,6,, a2 “Vx?

(5.28)
+oClIgyl1% + llg 1)

= Qantarty >+ oclleyll® + g ll®).

Hence, we can obtain from (5.19), (5.27) and (5.6), (5.16),

and (5.18) that

(5.29)

2
< ctlggll? + g, l%1 + en®F .

If we set x = £, € £ 77 in (5.20) and use (5.6), (5.9), (5,16)

and (5.23) we obtain

<‘52t'527 ¥ <32151x'52> ¥ <32252x'52>
(5.30) + 8E,(1,8% + 8E,(0,8)°

ch® s+ e g Il +lgyll%.

In




e TR T T T Y

B

-34-

However,
1
1 2 1,
<32252x'52> =2 fo (23283 dx = 3 <(ag,)y £5185 )

(5.31) |
2 i’ s 097 s o glf .

Thus, if we add (5.29) to (5.30) and use (5.31) we obtain

14 221 2 1 2 2
3 E[<Elr ja-l—z- g+ llEsll™ 1 + (B=3Y) (£5(1,8)" + £,(0,8)7)

(5.32)
< CUliggll® + g l% ) + cn® .

We now obtain from Gronwall's lemma the result

s
(5.33) ||gl(s)H2 +j|§2(s)1|2 + (B - %Y) L)[§2(1,0)2-+52(0,0)2]do

2r

< Ch for 0 < s < t.

Since it follows from (5.6) and (5.16) that

2 2 2r
In 1™ +1linyl1™ < ch™

we have shown that

| (u=U) () || + |[(v-W)(s)|] < Ch®, 0 <s < t.

Thus, we have shown that (5.21) implies (5.22). Hence, we can

conclude (as our theorem asserts) that there exists h0 > 0

such that if 0 < h < h then (U,V) exist on [0,T] and

o 14
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(5.34) | (u=0) (&) || + |[(v=V) (t)]| < Ch® for 0 <t < T.
QQE.D-

We also note that the following estimate is valid [1l]:

r
(5. 35) Iny| < Ch” |v|, .

We can use this estimate to conclude from (5.33) the following

corollary.

Corollary 1. If in addition to the conditions of Theorem 1

we have that

T 2
(5.36) f |v]2 at < =
0

and B8 > % , then the estimate

T
(5.37) f [|v(1,8) = V(1,£)[% + [v(0,8) - v(0,t)|%1at < ch®®
0

is valid.
We now consider the optimality of the estimate (1.9).
First, we consider the problem

ut + Vx = Q, (x,t) e [0,1])x[0O,T] ,

vt + ux = -%V,

(5.38)
v(o,t) = go(t) ’ v(l,t) = gl(t): t € [(0,T] .,

u(x,0) = uo(x), vix,0) = vo(x), x € [0,1) .,

G > rrnoe -
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A

where £ is a constant. The next lemma shows that if the

solution (u,v) to (5.38) is smooth enough and if

lug = 0O ]| g cn™t,

(5.39)

d
{vy = V(0), x> =0, x €3z 2,
then the improved estimate

(5.40)  h™l|lu(t) - uGe)|| + ||v(t) - V(t)|| < ch®, t e [0,T],

can be obtained. We note that the estimate (5.40) is of optimal

order in h for both u and v.

Lemma 3. Let (u,v) be the solution to (5.38) and assume
that there exists C8 such that
sup  ( ||ul| + [lvll,) < Cg.
0<t<T r+l r 8

T 2
J, MmeliZe oe < cq -

Let (U,V) be the solution to (1.6) with a 1, £ 0,

12 1=
a,, =1, a,, =0, £,(uv) z-fv, 8=0, k>0, and r > 1.
Assume that (U(0), V(0)) satisfies (5.39). Then the estimate

(5.40) is wvalid.

Proof. It is easily checked that (using the notation of Theorem 1)

N TR LY
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(5.41) <glt, xP= L8yr XD = <"1t' XD+ x €M

and
A d
(5.42) {gzt, x>+ <51x. x>= - £l x> x €35 m .

We set X = ¢ in (5.41), = g in (5.42), and add the
1 X 2

resulting equations to obtain

1 4d 2 2
3 ae LIell™ + gl ]

(5.43)
<

2
I

1 1 2 A 2
'2'““1t +5le 1™ + €] lgyll" -

Now it follows from standard estimates that in this case

liny Il < cn™% Jju) < ch™ jju

r+l’ ””1,;” < ellesr -
(5.44)

r
Ingll = ch™ f[v . -

Also, we can conclude from (5.39) and (5.44) that

111}

(5.45) e, @)l < cn™t, g0 =z o.

Hence, it follows from (5.43), (5.44), and (5.45) and Gronwall's

inequality that

(5.46) lege 12+ Qe |2 ¢ en? v e fo,m.

The result (5.40) now follows from (5.44) and (5.46). Q.E.D.
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We conjecture that the estimate (5.40) is valid in
general if the solution (u,v) to (1.1l) is smooth enough,

if a,, = 0, and if

llag = U@ || < ch™,

{21y = V(O)), x> =0, xe€ZH7N-
Next, consider the system

Ut + Vx = fl(X)' (x,t) € [0,1)x[0,T},

vt + ux + vx = fz(x),

(5.47)
v(0,t) = go(t). vil,t) = g,(t), t € (o,T],

u(x,0) = uo(x), vi(x,0) = vo(x). x € [0,1].

Let the space ] = 7ﬂk(r,6) where ¢§ is a uniform partition

with mesh length h, i.e., h = % for N a positive integer

and xj = jh. h
Set n =u- Q(u,v) as before. Let (U,V) be the f
solution of scheme (l1.6) for (5.47) with g = 1 and initial

conditions

(5.48) vV(0) = R(Vo)r Uu(o) = Q(uorvo) .

IR S e

Let 7 = 7771(2,5). It can be shown that if (u,v) 1is a

smooth solution to (5.47), then there exists a constant C

0
ey

.

such that

ey

- oy .
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5/2
(5.49) Ing I+ lingll < g 0¥/,
This result can be used in the analysis of Theorem 1 to show

that if (u,v) is a smooth solution to (5.47), then the result

(5.500  h™Y? Jue) - )] + [lvie) - vv)|| < cn?,

t e [o,T),

can be proven. The estimate (5.50) cannot be improved since it can be

proven by techniques similar to those used in [3] that the estimate at
t =0,

-1/2 2
h"Y2 lu, - Qlugvll + llvy - Revpll < en?,

cannot be improved.

It can also be shown that if 77 = 7WE(4,6) and if the
initial conditions are determined by (5.48), then the estimate

(1.9) cannot be improved.
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